Икеле иҫәпләү системаһы

Википедия — ирекле энциклопедия мәғлүмәте
Перейти к навигации Перейти к поиску
Икеле иҫәпләү системаһы
Тәртип буйынса һуңыраҡ килеүсе троичная система счисления[d]
Основание системы счисления 2
Commons-logo.svg Икеле иҫәпләү системаһы Викимилектә

Икеле иҫәпләү системаһы — нигеҙе 2 булған позицион иҫәпләү системаһы. Цифрлы электрон схемаларҙа логик вентилдәрҙә туранан-тура тормошҡа ашырыу арҡаһында, икеле система бөтә хәҙерге заман компьютерҙарында һәм башҡа иҫәпләү электрон ҡоролмаларҙа ҡулланыла.

Һандарҙы икеле яҙыу[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле иҫәпләү системаһында һандар ике символ (0 һәм 1) ярҙамында яҙылалар. Һан ниндәй иҫәпләү системаһында яҙылған икәнен бутамаҫ өсөн, уға уң яҡта аҫтан күрһәткес ҡуялар. Мәҫәлән, һан унарлы системала 510, икеле системала 1012. Ҡайһы берҙә икеле һанды 0b префиксы йәки & (амперсанд) символы менән тамғалайҙар[1], мәҫәлән 0b101 йәки ярашлы рәүештә &101.

Икеле иҫәпләү системаһында (унарлынан башҡа икенсе иҫәпләү системаһындағы кеүек) тамғалар берәрләп уҡыла. Мәҫәлән, 1012 һаны «бер ноль бер» тип әйтелә.

Натураль һандар[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле иҫәпләү системаһында тип яҙылған натураль һандың ҡиммәте:

бында:

  •  — һандағы цифрҙар (тамғалар) һаны,
  •  — {0,1} күмәклегенән цифрҙар,
  •  — цифрҙың тәртип номеры.

Тиҫкәре һандар[үҙгәртергә | вики-тексты үҙгәртергә]

Тиҫкәре икеле һандар унарлы һандар кеүек үк тамғаланалар: һан алдында «−» тамғаһы. Йәғни, икеле иҫәпләү системаһында яҙылған тиҫкәре бөтөн һанының ҡиммәте:

Иҫәпләү техникаһында тиҫкәре икеле һандарҙы өҫтәлмә кодта яҙыу ҡулланыла.

Кәсер һандар[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле иҫәпләү системаһында тип яҙылған кәсер һандың ҡиммәте:

бында:

  •  — һандың кәсер өлөшөнөң цифрҙар һаны,
  •  — күмәклегенән цифрҙар.

Икеле һандарҙы ҡушыу, алыу һәм ҡабатлау[үҙгәртергә | вики-тексты үҙгәртергә]

Ҡушыу таблицаһы

+ 0 1
0 0 1
1 1 10( күмәклегенән цифрҙарразрядҡа күсереү)

Алыу таблицаһы

- 0 1
0 0 1
1 (өлкән разрядтан бурысҡа алыу) 1 0

«Бағаналап» ҡушыуға миҫал (1410 + 510 = 1910 йәки 11102 + 1012 = 100112):

+ 1 1 1 0
1 0 1
1 0 0 1 1

Ҡабатлау таблицаһы

× 0 1
0 0 0
1 0 1

«Бағаналап» ҡабатлауға миҫал (1410 * 510 = 7010 йәки 11102 * 1012 = 10001102):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Һандарҙы үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле иҫәпләү системаһынан унарлы иҫәпләү системаһына үҙгәртеү өсөн түбәндәге 2 нигеҙенең дәрәжәләре таблицаһын ҡулланалар:

1024 512 256 128 64 32 16 8 4 2 1

1 цифрынан башлап бөтә цифрҙар икегә ҡабатлана. 1-ҙән һуң торған нөктә икеле нөктә тип атала.

Икеле һандарҙы унарлыға үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

1100012 икеле һаны бирелһен, ти. Унарлыға үҙгәртеү өсөн уны разрядтары буйынса сумма рәүешендә түбәндәгесә күрһәтегеҙ:

1 * 25 + 1 * 24 + 0 * 23 + 0 * 22 + 0 * 21 + 1 * 20 = 49

Шул уҡ бер аҙ икенсерәк:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Быны түбәндәгесә таблица рәүешендә яҙырға була:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Уңдан һулға хәрәкәт итегеҙ. Һәр икеле берәмек аҫтында аҫҡы юлда уның эквивалентын яҙығыҙ. Килеп сыҡҡан унарлы һандарҙы ҡушығыҙ. Шулай итеп, 1100012 икеле һаны 4910 унарлы һанына тиң.

Кәсерле икеле һандарҙы унарлыға үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

1011010,1012 һанын унарлыға үҙгәртергә кәрәк. Был һанды түбәндәгесә яҙабыҙ:

1 * 26 + 0 * 25 + 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 + 1 * 2−1 + 0 * 2−2 + 1 * 2−3 = 90,625

Шул уҡ бер аҙ икенсерәк:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Йәки таблица буйынса:

64 32 16 8 4 2 1   0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0   +0.5 +0 +0.125

Горнер ысулы менән үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

Һандарҙы икеленән унарлы системаға был ысул менән үҙгәртеү өсөн, цифрҙарҙы, алдан табылған һөҙөмтәне системаның нигеҙенә (был осраҡта 2) ҡабатлап, һулдан уңға ҡушырға кәрәк. Горнер ысулы менән ғәҙәттә икеленән унарлы системаға күсерәләр. Кире операция ҡатмарлы, сөнки икеле иҫәпләү системаһында ҡушыу һәм ҡабатлау күнекмәһе талап ителә.

Мәҫәлән, 10110112 икеле һаны унарлы системаға ошолай күсерелә:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

Йәғни унарлы системала был һан 91 тип яҙыла.

Горнер ысулы менән һандарҙың кәсер өлөшөн күсереү[үҙгәртергә | вики-тексты үҙгәртергә]

Цифрҙар һандан уңдан һулға ҡарай алыналар һәм иҫәпләү системаһының нигеҙенә (2) бүленәләр.

Мәҫәлән 0,11012

(0 + 1)/2 = 0,5
(0,5 + 0)/2 = 0,25
(0,25 + 1)/2 = 0,625
(0,625 + 1)/2 = 0,8125

Яуап: 0,11012= 0,812510

Унарлы һандарҙы икелегә үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

19 һанын икелегә үҙгәртергә кәрәк икән, ти. Түбәндәге процедура менән файҙаланырға мөмкин:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Шулай итеп, беҙ һәр бүлендекте мы делим каждое частное на 2-гә бүләбеҙ һәм ҡалдыҡты икеле яҙыуҙың аҙағына яҙабыҙ. Бүлеүҙе ҡалдыҡ 0 булғанға тиклем дауам итәбеҙ. Һөҙөмтә уңдан һулға ҡарай яҙыла. Йәғни түбәндәге (1) цифры иң һулдағы була һәм башҡа шулай. Һөҙөмтәлә 19 һанын икеле яҙыуҙа табабыҙ: 10011.

Унарлы кәсер һандарҙы икеле һандарға үҙгәртеү[үҙгәртергә | вики-тексты үҙгәртергә]

Әгәр бирелгән һандың бөтөн өлөшө булһа, ул кәсер өлөшөнән айырым үҙгәртелә. Кәсер һанды унарлы иҫәпләү системаһынан икелегә күсереү түбәндәге алгоритм буйынса тормошҡа ашырыла:

  • Кәсер икеле иҫәпләү системаһының нигеҙенә (2) ҡабатлана;
  • Килеп сыҡҡан ҡабатландыҡтың бөтөн өлөшө икеле иҫәпләү системаһындағы һандың өлкән разряды сифатында айырып алына;
  • Әгәр килеп сыҡҡан ҡабатландыҡтың кәсер өлөшө нулгә тигеҙ булһа, йәки талап ителгән теүәллеккә өлгәшелһә, алгоритм тамамлана. Кире осраҡта ҡабатландыҡтың кәсер өәлөшө өҫтөндә иҫәпләүҙәр дауам итә.

Миҫал: 206,116 унарлы һанын икелегә күсерергә кәрәк икән, ти.

Алдан һүрәтләнгән алгоритм буйынса бөтөн өлөшөн үҙгәртеү 20610=110011102 һөҙөмтәһен бирә. Дробную часть 0,116 кәсер өлөшөн 2 нигеҙенә ҡабатлайбыҙ, ҡабатландыҡтың бөтөн өлөшөн эҙләнгән икеле кәсер һандың өтөрҙән һуңғы разрядына яҙып барабыҙ:

0,116 • 2 = 0,232
0,232 • 2 = 0,464
0,464 • 2 = 0,928
0,928 • 2 = 1,856
0,856 • 2 = 1,712
0,712 • 2 = 1,424
0,424 • 2 = 0,848
0,848 • 2 = 1,696
0,696 • 2 = 1,392
0,392 • 2 = 0,784
и т. д.

Шулай итеп 0,11610 ≈ 0,00011101102

Табабыҙ: 206,11610 ≈ 11001110,00011101102

Ҡулланылышы[үҙгәртергә | вики-тексты үҙгәртергә]

Цифрлы ҡоролмаларҙа[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле система цифрлы ҡоролмаларҙа ҡулланыла, сөнки иң ябай система булып тора һәм түбәндәге талаптарға тап килә:

  • Чем меньше значений существует в Системала ни тиклем әҙ ҡиммәттәр булһа, шул тиклем был ҡиммәттәр менән эш итеүсе айырым элементтарҙы әҙерләү ябайыраҡ. Айырып әйткәндә, икеле иҫәпләү системаһының ике цифры бик күп физик күренештәр менән күрһәтелергә мөмкин: ток бар (ток сик ҡиммәтенән ҙурыраҡ) — ток юҡ (ток сик ҡиммәтенән кәмерәк), магнит ҡырының индукцияһы сик ҡиммәтенән ҙурыраҡ йәки юҡ (магнит ҡырының индукцияһы сик ҡиммәтенән бәләкәйерәк) һәм башҡа шулай.
  • Элемент торошоноң һаны ни тиклем әҙ булһа, шул тиклем тотҡарлыҡ тотороҡлолоғо ҙурыраҡ һәм ул шәберәк эшләй аласаҡ. Мәҫәлән, өс торошто көсөргәнеш, ток йәки магнит ҡырының индукцияһы дәүмәле аша кодлау өсөн, ике сик ҡиммәте һәм тотҡарлыҡ тотороҡлолоғона һәм мәғлүмәт һаҡлау ышаныслылығына булышлыҡ итеүсе ике компаратор индерергә кәрәк.[сығанаҡ 2847  көн күрһәтелмәгән]
  • Икеле арифметика ябайыраҡ. Һандар өҫтөндә төп ғәмәлдәр — ҡушыу һәм ҡабатлау таблицалары ябай.

Цифрлы электроникала икеле иҫәпләү системаһында бер икеле разрядҡа икелерегистрҙың бер икеле разряды ярашлы, йәғни ике торошло (0,1) икеле триггер.

Иҫәпләү техникаһында тиҫкәре икеле һандарҙы өҫтәлмә кодта яҙыу киң ҡулланыла. Мәҫәлән, −510 һаны −1012 тип яҙылырға мөмкин, ләкин 32-битлы компьютерҙа 111111111111111111111111111110112 тип һаҡланасаҡ.

Инглиз үлсәү системаһында[үҙгәртергә | вики-тексты үҙгәртергә]

Һыҙыҡлы үлсәмдәрҙе дюймдарҙа күрһәткәндә традиция буйынса унарлы түгел, ә икеле кәсерҙәр ҡулланыла, мәҫәлән: 5¾″, 715/16″, 311/32″ һәм башҡа шулай.

Дөйөмләштереү[үҙгәртергә | вики-тексты үҙгәртергә]

Икеле иҫәпләү системаһы икеле кодлау системаһы һәм нигеҙе 2 булған күрһәткесле ауырлыҡ функцияһы комбинацияһы булып тора. Әйтергә кәрәк, һан икеле кодта яҙылырға мөмкин, ә был ваҡытта иҫәпләү системаһы икеле түгел, ә икенсе нигеҙ менән булырға мөмкин. Миҫал: икеле-унарлы кодлау, унда унарлы цифрҙар икеле күренештә яҙыла, ә иҫәпләү системаһы — унарлы.

Тарихы[үҙгәртергә | вики-тексты үҙгәртергә]

  • 1605 йылда Френсис Бэкон алфавитының хәрефтәрен икеле цифрҙар эҙмә-эҙлелектәренә ҡайтарып ҡалдырырға мөмкин булған системаны һүрәтләй, улар үҙ сиратында теләһә ниндәй осраҡлы текстарҙа шрифттарҙың саҡ ҡына һиҙелерлек үҙгәреше кеүек кодланырға мөмкиндәр. Икеле кодлауҙың дөйөм теорияһы үҫешендә, был ысул теләһә ниндәй объекттарға ҡулланылырға мөмкин, тигән иҫкәртеү мөһим аҙым булып тора[8] (cм. Шифр Бэкона).
  • Хәҙерге икеле система Лейбниц тарафынан XVII быуатта Explication de l’Arithmétique Binaire исемле хеҙмәтендә тулыһынса һүрәтләнгән[9]. Лейбниц иҫәпләү системаһында, хәҙерге икеле системаһындағы кеүек, 0 һәм 1 цифрҙары ҡулланылған. Ҡытай мәҙәниәте менән мауығыусы кеше булараҡ, Лейбниц Книга Перемен тураһында белгән һәм гексаграммалар 0-дән 111111-гә тиклемге икеле һандарға тап килеүен билдәләгән. Ул, был сағылдырыу Ҡытайҙың шул замандың фәлсәфәүи математикаһында ҙур ҡаҙаныштарын раҫлаусы дәлил булып тороуы менән һоҡланған[10].
  • 1937 йылда Клод Шеннон MITта Символический анализ релейных и переключательных схем исемле кандидатлыҡ диссертацияһын яҡлауға тәҡдим итә, унда булева алгебра һәм икеле арифметика электрон реле һәм күсереп ялғағыстарға ҡарата ҡулланылған. Бөтә хәҙерге заман цифрлы техника асылда Шеннондың диссертацияһына нигеҙләнгән.
  • 1937 йылдың ноябрендә, аҙаҡ Bell Labsта эшләүсе Джордж Штибиц, реле базаһында «Model K» компьютерын (инглиз теленән «Kitchen», йыйыу башҡарылған кухня) яһай, ул икеле ҡушыуҙы башҡара. 1938 йыл аҙағында Bell Labs Штибиц етәкселегендә тикшеренеү программаһын йәйелдерә. Уның етәкселегендә эшләнгән, 1940 йылдың 8 ғинуарында әҙер булған компьютер комплекслы һандар менән ғәмәлдәр башҡара белә. Дартмут колледжында American Mathematical Society конференцияһында демонстрациялау ваҡытында, 1940 йылдың 11 сентябрендә, Штибиц алыҫтағы комплекслы һандар калькуляторына телефон линияһы буйынса телетайп ҡулланып командалар ебәреү мөмкинлеген демонстрациялай. Был алыҫтағы иҫәпләү машинаһын телефон линияһы ярҙамында ҡулланырға беренсе маташыу була. Демонстрациялау шаһиты булған конференцияла ҡатнашыусылар араһында Джон фон Нейман, Джон Мокли һәм Норберт Винер була, аҙаҡ улар был турала үҙҙәренең мемуарҙарында яҙалар.

Ҡыҙыҡлы факттар[үҙгәртергә | вики-тексты үҙгәртергә]

Шулай уҡ ҡарағыҙ[үҙгәртергә | вики-тексты үҙгәртергә]

Иҫкәрмәләр[үҙгәртергә | вики-тексты үҙгәртергә]

  1. Попова Ольга Владимировна Учебное пособие по информатике.
  2. Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC», Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9 
  3. W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
  4. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire — New York: Barnes & Noble, 1996. — Б. 80. — ISBN 0-88029-595-3.
  5. Experts 'decipher' Inca strings. Тәүге сығанаҡтан архивланған 18 август 2011.
  6. Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus. — P. 49.
  7. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178—181. Проверено 2009-12-24.
  8. Bacon, Francis, «The Advancement of Learning», vol. 6, London, сс. Chapter 1, <http://home.hiwaay.net/~paul/bacon/advancement/book6ch1.html> 
  9. http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
  10. Aiton, Eric J. (1985), «Leibniz: A Biography», Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6 

Һылтанмалар[үҙгәртергә | вики-тексты үҙгәртергә]